Industry 4.0 for beginners
The terms Industry 4.0, Digitalization, Internet of Things and Smart Factory are used to refer to the same thing, the digital transformation of the industry, both machines and production processes, and in general of all the productive economy. This article will try to explain it, but from a simple plane to try that non-experts to understand.
We have lived many important technological changes in the last 10 years that have changed many things, we refer to development of internet, of smart phones, of telecommunications, etc., which have greatly changed the way we relate and do the things. Nowadays it is something natural.
Now we have to incorporate all this to the factories, production plants in general and know how to do it correctly to get more efficient and flexible productive processes, according to market demands. Some call it the fourth industrial revolution and others prefer to describe it as an evolution; we have no doubt that we are at the beginning of the fourth industrial revolution. When we look in perspective within 50 years we will say that this revolution began in the early twenty-first century.
The third industrial revolution marked the passage of electrical factory to the entrance of electronics and computers to automate plants; then there was no Internet or mobile devices.
Has this fourth industrial revolution already started? The answer is yes, although we are in the beginning, but there are industries that have begun to incorporate these technologies.

There are a number of technological advances that have created the ideal basis for this revolution:
1-The new materials and manufacturing technologies have drastically decreased the size of electronic devices and the computing power of processors has raised significantly.
2-In a few years the speed and quality of the communications have multiplied by 1000. Mobile technology has developed at breakneck speed.
3-Internet appeared in the 90s that has changed everything, from our day to day until business models. Does anyone now imagine a world without internet?
On this basis the software has been greatly developed, the functionalities have moved from hardware to software, and there are many standard programs available to small and medium companies. The softwares for simulation and integrated engineering are just a few examples.
One of the amazing advances of this digital transformation is called by some “digital twin“. For example, you can create virtual prototypes to avoid costly investments, the time to market is greatly reduced, and the costs and selling prices also. This requires powerful 3D programs where all variables are simulated as if it were real, the test environment is safe and dangerous situations can be simulated and tested, additionally training is also faster and more effective. The automotive industry is already benefiting from it by raising productivity 2 or 3 times and by reducing significantly the time to market.
The integrated engineering programs are other interesting advances. Traditionally engineers have used different systems for the design of the plant, causing some inconsistency of data from different disciplines (process, civil, electrical, I & C, etc.) and incomplete documentation. These new tools work with a single database and allow several teams from different areas to work simultaneously, the result is a significant reduction in costs and engineering hours. There are examples already on the market as COMOS or EPLAN.
What’s “Big Data” or rather “Industrial Big Data“? Due to the great advance in communications, in data processing capacity and in other technologies such as electronics manufacturing, companies now face a huge data growth. The traditional software for processing is no longer valid. The industrial sensors are now intelligent, they capture and process data, and even have some autonomy to make decisions, but you need to transform that data into useful information to improve production and profitability of the plant. “Big Data” has to be converted into “Smart Data”.
All this requires the development of software applications of another dimension, not only able to analyze large volumes of data but able to process complex algorithms and provide specific operational intelligence of each sector. Many applications, able to analyze all this data and present them so that they are really useful for industries, are under constant development. One example is the software XHQ, very introduced in the oil & gas industry.
Industries already have much information but 90% do not take advantage. A very high percentage of industrial processes does not work optimally.

Talent missing? Definitely further guidance is needed in universities for getting this preparation, as it is happening for example in the faculties of Mathematics due to the high demand for professionals capable of creating those algorithms that convert Big Data into information really useful, into Smart Data.
The data is in the cloud to be shared to go optimizing production processes. Factories and machines are also generators of knowledge that should be analyzed and used.
Cybersecurity must protect assets and users against all types of attacks and threats in the cyber environment. It is necessary to strengthen industrial environments against such new threats. This is one of the barriers to digitalization, many companies are reluctant to store data in the cloud, but the alternative of not doing so will probably be worse.
Cloud computing is a new service model that provides resources to process information, providing users with standardized services that can be used in a flexible and adaptive way. Enables companies to focus on their core business, reduce costs and get access to more powerful resources.
The fourth industrial revolution has just begun. Companies that do not transform will struggle to survive. This transformation has to be progressive always looking for answers to the same question: What we can and want to improve?
In summary, manufacturers have to adapt to the new market by reducing costs and delivery times, mass production becomes more individual and personalized, innovation needs to be on the market much faster, safety and the environment are a priority and all this having in mind that online selling has changed business models. There is much more competition that now it’s global.